Responses of Waveform-Selective Absorbing Metasurfaces to Oblique Waves at the Same Frequency
نویسندگان
چکیده
Conventional materials vary their electromagnetic properties in response to the frequency of an incoming wave, but these responses generally remain unchanged at the same frequency unless nonlinearity is involved. Waveform-selective metasurfaces, recently developed by integrating several circuit elements with planar subwavelength periodic structures, allowed us to distinguish different waves even at the same frequency depending on how long the waves continued, namely, on their pulse widths. These materials were thus expected to give us an additional degree of freedom to control electromagnetic waves. However, all the past studies were demonstrated with waves at a normal angle only, although in reality electromagnetic waves scatter from various structures or boundaries and therefore illuminate the metasurfaces at oblique angles. Here we study angular dependences of waveform-selective metasurfaces both numerically and experimentally. We demonstrate that, if designed properly, capacitor-based waveform-selective metasurfaces more effectively absorb short pulses than continuous waves (CWs) for a wide range of the incident angle, while inductor-based metasurfaces absorb CWs more strongly. Our study is expected to be usefully exploited for applying the concept of waveform selectivity to a wide range of existing microwave devices to expand their functionalities or performances in response to pulse width as a new capability.
منابع مشابه
Time-Domain Filtering of Metasurfaces
In general electromagnetic response of each material to a continuous wave does not vary in time domain if the frequency component remains the same. Recently, it turned out that integrating several circuit elements including schottky diodes with periodically metallised surfaces, or the so-called metasurfaces, leads to selectively absorbing specific types of waveforms or pulse widths even at the ...
متن کاملWaveform Selectivity at the Same Frequency
Electromagnetic properties depend on the composition of materials, i.e. either angstrom scales of molecules or, for metamaterials, subwavelength periodic structures. Each material behaves differently in accordance with the frequency of an incoming electromagnetic wave due to the frequency dispersion or the resonance of the periodic structures. This indicates that if the frequency is fixed, the ...
متن کاملEffects of Multiple Structure-soil-structure Interactions Considering the Earthquake Waveform and Structures Elevation Effects
The simultaneous effects of soil and existing structures are known as the site-city interaction (structure-soil-structure). The impact of site-city interaction on structure behavior is effective. Thus, this interaction in some regions decreases the responses while increases in other areas. In addition, the site-city interaction of many parameters including the soil type, density rate, height of...
متن کاملحذف هارمونیک های انتخابی مراتب بالا در مبدل های چندسطحی با استفاده از الگوریتم مهاجرت پرندگان
This paper presents a new method to find the optimum switching angles in voltage source multilevel converters in order to minimize specific higher order harmonics and decrease the total harmonic distortion (THD) of their output voltage waveform. The output voltage waveform of inverter can either be in the form of staircase or PWM. In order to increase the degrees of freedom and elimination of m...
متن کاملAsymmetric Rectangular Waveform in Stimulation with High Frequency Alternating Current Reduces the Threshold for Neural Conduction Block
Introduction Abnormal neural impulses in the nervous system may lead to various diseases and disabilities. High frequency alternating currents (HFAC) has been used to block the propagation of such impulses and improve the symptoms or disabilities. The technique is safe, reversible, and relatively selective, and its reliability, the optimum stimulation parameters, and elimination of the onset re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016